Glimepiride Reduces the Expression of PrPC, Prevents PrPSc Formation and Protects against Prion Mediated Neurotoxicity

نویسندگان

  • Clive Bate
  • Mourad Tayebi
  • Luisa Diomede
  • Mario Salmona
  • Alun Williams
چکیده

BACKGROUND A hallmark of the prion diseases is the conversion of the host-encoded cellular prion protein (PrP(C)) into a disease related, alternatively folded isoform (PrP(Sc)). The accumulation of PrP(Sc) within the brain is associated with synapse loss and ultimately neuronal death. Novel therapeutics are desperately required to treat neurodegenerative diseases including the prion diseases. PRINCIPAL FINDINGS Treatment with glimepiride, a sulphonylurea approved for the treatment of diabetes mellitus, induced the release of PrP(C) from the surface of prion-infected neuronal cells. The cell surface is a site where PrP(C) molecules may be converted to PrP(Sc) and glimepiride treatment reduced PrP(Sc) formation in three prion infected neuronal cell lines (ScN2a, SMB and ScGT1 cells). Glimepiride also protected cortical and hippocampal neurones against the toxic effects of the prion-derived peptide PrP82-146. Glimepiride treatment significantly reduce both the amount of PrP82-146 that bound to neurones and PrP82-146 induced activation of cytoplasmic phospholipase A(2) (cPLA(2)) and the production of prostaglandin E(2) that is associated with neuronal injury in prion diseases. Our results are consistent with reports that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI)-phospholipase C which reduced PrP(C) expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC) and were reversed by co-incubation with p-chloromercuriphenylsulphonate, an inhibitor of endogenous GPI-PLC. CONCLUSIONS Collectively, these results indicate that glimepiride may be a novel treatment to reduce PrP(Sc) formation and neuronal damage in prion diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic prospective for human PrPC conversion to PrPSc: Molecular dynamic insights

PrPC conversion to PrPSc isoform is the main known cause for prion diseases including Crutzfeldt-Jakob, Gerstmann-Sträussler-Sheinker syndrome and fatal familial insomnia in human. The precise mechanism underling this conversion is yet to be well understood. In the present work,  using the coordinate file of PrPC (available on the Protein Data Bank) as a starting structure, separate molecular d...

متن کامل

The Role of GPI-anchored PrPC 119 The Role of GPI-anchored PrP in Mediating the Neurotoxic Effect of Scrapie Prions in Neurons

There are two central phenomena in prion disease: prion replication and prion neurotoxicity. Underlying them both is the conversion of a host-encoded ubiquitously expressed protein, prion protein (PrPC), into a partially-protease resistant isoform, PrPSc, which accumulates in the brain. PrPSc is associated with both pathology and infectivity (Prusiner, 1991). In the absence of PrPC, PrPSc canno...

متن کامل

Prion peptide-mediated cellular prion protein overexpression and neuronal cell death can be blocked by aspirin treatment.

Prion diseases are infectious neurodegenerative disorders characterized by the conversion of the cellular prion protein (PrPc) to the misfolded isoform (PrPsc). Prion peptide PrP 106-126 [PrP (106-126)] shares many physiological properties with PrPsc; it is neurotoxic in vitro and in vivo. PrP (106-126) induces neurotoxicity by the overexpression of PrPc and activation of the mitogen-activated ...

متن کامل

Caffeine prevents human prion protein-mediated neurotoxicity through the induction of autophagy.

The human prion protein (PrP) fragment PrP(106‑126) possesses the majority of the pathogenic properties associated with the infectious scrapie isoform of PrP, known as PrPSc. The accumulation of PrPSc in the brain of humans and animals affects the central nervous system. Recent epidemiological studies have suggested that caffeine, one of the major components of coffee, exerts protective effects...

متن کامل

Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction.

Prion disorder-related neurodegenerative diseases are characterized by the accumulation of prion protein (PrP) scrapie isoform (PrPsc) within the central nervous system. PrPsc induces neuronal cell death by increasing intracellular generation of reactive oxygen species (ROS). Lactoferrin (LF) is an 80 kDa protein, which has antioxidant abilities due to the scavenging of ROS. The effects of LF t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009